On topological graphs with at most four crossings per edge
نویسندگان
چکیده
منابع مشابه
On topological graphs with at most four crossings per edge
We show that if a graph G with n ≥ 3 vertices can be drawn in the plane such that each of its edges is involved in at most four crossings, then G has at most 6n− 12 edges. This settles a conjecture of Pach, Radoičić, Tardos, and Tóth. As a corollary we also obtain a better bound for the Crossing Lemma which gives a lower bound for the minimum number of crossings in a drawing of a graph.
متن کاملGraphs Drawn with Few Crossings Per Edge
Given a simple graph G, let v(G) and e(G) denote its number of vertices and edges, respectively. We say that G is drawn in the plane if its vertices are represented by distinct points of the plane and its edges are represented by Jordan arcs connecting the corresponding point pairs but not passing through any other vertex. Throughout this paper, we only consider drawings with the property that ...
متن کاملConfigurations with Few Crossings in Topological Graphs
In this paper we study the problem of computing subgraphs of a certain configuration in a given topological graph G such that the number of crossings in the subgraph is minimum. The configurations that we consider are spanning trees, s–t paths, cycles, matchings, and κ-factors for κ ∈ {1, 2}. We show that it is NP-hard to approximate the minimum number of crossings for these configurations with...
متن کاملLight subgraphs in graphs with average degree at most four
A graph H is said to be light in a family G of graphs if at least one member of G contains a copy of H and there exists an integer λ(H,G) such that each member G of G with a copy of H also has a copy K of H such that degG(v) ≤ λ(H,G) for all v ∈ V(K). In this paper, we study the light graphs in the class of graphs with small average degree, including the plane graphs with some restrictions on g...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry
سال: 2019
ISSN: 0925-7721
DOI: 10.1016/j.comgeo.2019.101574